QUADRATURE PHASING AND INDEX GATING OPTIONS

Standard Quadrature Phasing -

A leads B during clockwise rotation when viewed from the shaft end or mounting face.

If your model is.	And your output type is.	And you need.	For number of channels enter...	For waveform see...
$\begin{aligned} & \text { 15, 25, 121, } \\ & \text { 260, TR1, TR2, } \\ & \text { TR3 } \end{aligned}$	$\begin{aligned} & \text { OC, PU, HV, OD, } \\ & \text { LO, PP } \end{aligned}$	Single channel only	A	Figure 1
		Quadrature A and B	Q	Figure 2
		Quadrature A and B with 180° index gated to A	R	Figure 3
		Quadrature A and B with 90° index gated to A and B	R3	Figure 4
		Quadrature A and B with inverted 180° index gated to A	R5	Figure 5
		Quadrature A and B with inverted 90° index gated to A and B	R7	Figure 6
$\begin{aligned} & 755 \mathrm{~A}, 702,725, \\ & 758,802 \mathrm{~S}, \\ & 858 \mathrm{~S} \end{aligned}$	HV, PP	Quadrature A and B with 180° index gated to A	R	Figure 3
		Quadrature A and B with 180° index gated to B	R2	Figure 7
		Quadrature A and B with 90° index gated to A and B	R3	Figure 4
		Quadrature A and B with ungated index centered on A between 360° and 180°	R4	Figure 8
		Quadrature A and B with inverted 180° index gated to A	R5	Figure 5
		Quadrature A and B with inverted 180° index gated to B	R6	Figure 9
		Quadrature A and B with inverted 90° index gated to A and B	R7	Figure 6
		Quadrature A and B with ungated inverted index centered on A between 360° and 180°	R8	Figure 10
770, 771, 775, 776, 755A, 702, 725, 758, 802S, 858S, 865T	OC, PU Note: Interpolated units $C P R>3000$ will use HV/PP waveforms.	Quadrature A and B with ungated index centered on A low between 360° and 180°	R	Figure 11
		Quadrature A and B with 180° index gated to B low	R2	Figure 12
		Quadrature A and B with 90° index gated to A low and B low	R3	Figure 13
		Quadrature A and B with ungated index centered on A low between 360° and 180°	R4	Figure 14
		Quadrature A and B with inverted 180° index gated to A low	R5	Figure 15
		Quadrature A and B with inverted 180° index gated to B low	R6	Figure 16
		Quadrature A and B with inverted 90° index gated to A low and B low	R7	Figure 17
		Quadrature A and B with ungated inverted index centered on A low between 360° and 180°	R8	Figure 18

Reverse Quadrature Phasing -

B leads A during clockwise rotation when viewed from the shaft end or mounting face.

If your model is..	And your output type is...	And you need.	For number of channels enter...	For waveform see...
15, 25, 121,260, 770, 771,775, 776, 865T,TR1, TR2, TR3	$\begin{aligned} & \text { OC, PU, HV, } \\ & \text { OD, LO, PP } \end{aligned}$	Reverse Quadrature A and B	K	Figure 19
		Reverse Quadrature A and B with 180° index gated to B low	D	Figure 20
		Reverse Quadrature A and B with 90° index gated to A low and B low	D3	Figure 21
		Reverse Quadrature A and B with inverted 180° index gated to B low	D5	Figure 22
		Reverse Quadrature A and B with inverted 90° index gated to A low and B low	D7	Figure 23
$\begin{aligned} & 755 \mathrm{~A}, 702,725, \\ & 758,802 \mathrm{~S}, \\ & 858 \mathrm{~S} \end{aligned}$	HV, PP	Reverse Quadrature A and B with 180° index gated to B low	D	Figure 20
		Reverse Quadrature A and B with 180° index gated to A low	D2	Figure 24
		Reverse Quadrature A and B with 90° index gated to A low and B low	D3	Figure 21
		Reverse Quadrature A and B with ungated index centered on B low between 360° and 180°	D4	Figure 25
		Reverse Quadrature A and B with inverted 180° index gated to B low	D5	Figure 22
		Reverse Quadrature A and B with inverted 180° index gated to A low	D6	Figure 26
		Reverse Quadrature A and B with inverted 90° index gated to A low and B low	D7	Figure 23
		Reverse Quadrature A and B with ungated inverted index centered on B low between 360° and 180°	D8	Figure 27
$\begin{aligned} & 755 \mathrm{~A}, 702,725, \\ & 758,802 \mathrm{~S}, \\ & 858 \mathrm{~S} \end{aligned}$	OC, PU Note: Interpolated units CPR>3000 will use HV/PP waveforms.	Reverse Quadrature A and B with ungated index centered on B low between 360° and 180°	D	Figure 28
		Reverse Quadrature A and B with 180° index gated to A low	D2	Figure 24
		Reverse Quadrature A and B with 90° index gated to A low and B low	D3	Figure 21
		Reverse Quadrature A and B with ungated index centered on B low between 360° and 180°	D4	Figure 25
		Reverse Quadrature A and B with inverted 180° index gated to B low	D5	Figure 22
		Reverse Quadrature A and B with inverted 180° index gated to A low	D6	Figure 26
		Reverse Quadrature A and B with inverted 90° index gated to A low and B low	D7	Figure 23
		Reverse Quadrature A and B with ungated and inverted index centered on B low between 360° and 180°	D8	Figure 27

WAVEFORM DIAGRAMS

Figure 1: Single channel only

Figure 5: Quadrature A and B with inverted 180° Index gated to A

Figure 9: Quadrature A and B with inverted 180° Index gated to B

Figure 2: Quadrature A and B

Figure 6: Quadrature A and B with inverted 90° Index gated to A and B

Figure 14: Quadrature A and B with ungated Index centered on A low between 360° and 180°

Figure 10: Quadrature A and B with ungated inverted Index centered on A between 360° and 180°

R4

Figure 3: Quadrature A and B with 180° Index gated to A

Figure 7: Quadrature A and B with 180° Index gated to B

Figure 11: Quadrature A and B with ungated Index centered on A low between 360° and 180°

R5

Figure 15: Quadrature A and B with inverted 180° Index gated to A low

Figure 13: Quadrature A and B with 90° Index gated to A low and B low

R3

Figure 4: Quadrature A and B with 90° Index gated to A and B

Figure 8: Quadrature A and B with ungated Index centered on A between 360° and 180°

Figure 12: Quadrature A and B with 180° Index gated to B low

Figure 16: Quadrature A and B with inverted 180° Index gated to B low

Figure 17: Quadrature A and B with inverted 90° Index gated to A low and B low

Figure 18: Quadrature A and B with ungated inverted Index centered on A low between 360° and 180°

Figure 22: Reverse Quadrature A and B with inverted 180° Index gated to B low

D6

Figure 26: Reverse Quadrature A and B with inverted 180° Index gated to A low

Figure 19: Reverse Quadrature A and B

Figure 23: Reverse Quadrature A and B with inverted 90° Index gated to A low and B low

Figure 27: Reverse Quadrature A and B with ungated and inverted Index centered on B low between 360° and 180°

Figure 20: Reverse Quadrature A and B with 180° Index gated to B low

Figure 24: Reverse Quadrature A and B with 180° Index gated to A low

Figure 28: Reverse Quadrature A and B with ungated Index centered on B low between 360° and 180°

Call Sales \& Customer Service at 800-366-5412
EPC is open for business from
8:00 am to 7:30 pm EST/ 5:00 am to 4:30 pm PST.

